Detailed marking instructions for each question

Question	Generic scheme	Illustrative scheme	Max mark
1.	• ¹ find mid-point of PQ	•1 (1,2)	3
	• ² find gradient of median	• ² 2	
	• ³ determine equation of median	• ³ $y = 2x$	
Notes:			
2. \bullet^3 is only ava	ailable to candidates who use a mic ailable as a consequence of using th n the median, eg $(2,4)$.	lpoint to find a gradient. ne mid-point and the point R, or any other	point
3. At • ³ accept simplified.	any arrangement of a candidate's	equation where constant terms have been	
	ilable as a consequence of using a	perpendicular gradient.	
Commonly Obse	erved Responses:		
Candidate A - Po	erpendicular Bisector of PQ	Candidate B - Altitude through R	
$M_{PQ}(1,2)$	•1 🗸	$m_{\rm PQ} = -\frac{2}{3}$ •1 ^	
$m_{\rm PQ} = -\frac{2}{3} \Longrightarrow m_{\perp}$	$=\frac{3}{2}$ • ² ×	$m_{\perp} = \frac{3}{2}$ • ² ×	
2y = 3x + 1	• ³ ✓ 2	$2y = 3x + 3 \qquad \qquad \bullet^3 \checkmark 2$	
For other perper			
Candidate C - Median through P		Candidate D - Median through Q	
$M_{QR}(3\cdot 5,3)$	• ¹ x	$M_{PR}(0.5,5)$ • ¹ ×	
$m_{\rm PM} = -\frac{2}{11}$	• ² 1	$m_{\rm QM} = -\frac{10}{7} \qquad \qquad \bullet^2 \checkmark 1$	
11y + 2x = 40	• ³ ✓ 2	$7y + 10x = 40$ • ³ \checkmark 2	

Question	Generic scheme	Illustrative scheme	Max mark
2.	Method 1	Method 1	3
	•1 equate composite function to .		
	• ² write $g(g^{-1}(x))$ in terms of	• ² $\frac{1}{5}g^{-1}(x) - 4 = x$	
	$g^{-1}(x)$	5	
	• ³ state inverse function	• ³ $g^{-1}(x) = 5(x+4)$	
	Method 2	Method 2	
	• ¹ write as $y = \frac{1}{5}x - 4$ and start to	$\bullet^1 y + 4 = \frac{1}{5}x$	
	5	5	
	rearrange	(v+4)	
	• ² express x in terms of y	• ² eg $x = 5(y+4)$ or $x = \frac{(y+4)}{\frac{1}{5}}$	
	• ³ state inverse function	• ³ $g^{-1}(x) = 5(x+4)$	
	Method 3	Method 3	
	• ¹ interchange variables	$\bullet^1 x = \frac{1}{5}y - 4$	
	• ² express y in terms of x	• ² eg $y = 5(x+4)$ or $y = \frac{(x+4)}{\frac{1}{5}}$	
	• ³ state inverse function	• ³ $g^{-1}(x) = 5(x+4)$	
Notes:			
1. y = 5(x+4)	does not gain \bullet^3 .		
2. At \bullet^3 stage,	accept g^{-1} written in terms of any	dummy variable eg $g^{-1}(y) = 5(y+4)$.	
3. $g^{-1}(x) = 5(x)$	(x+4) with no working gains 3/3.		
Commonly Obse	erved Responses:		
Candidate A			
$x \rightarrow \frac{1}{5}x \rightarrow \frac{1}{5}x -$	4 = g(x)		
$5^{\circ} 5^{\circ}$ $\div 5 \rightarrow -4$	3 ()		
$\begin{array}{c} \div 5 \rightarrow -4 \\ \therefore +4 \rightarrow \times 5 \end{array}$	● ¹ ✓ awarded for kno	wing to perform	
		ns in reverse order	
5(x+4)	•		
$g^{-1}(x) = 5(x+4)$	4) • ³ ✓		
Candidate B - B	EWARE	Candidate C	
$g'(x) = \dots$	• ³ ¥	$g^{-1}(x) = 5x + 4$ with no work	king
		Award 0/3	

Question	Gener	ric scheme	Illustrative scheme		Max mark
3.	• ¹ start to differ	rentiate	• ¹ $-3\sin 2x$	\cdots stated or implied by \bullet^2	3
	• ² complete diff	erentiation	• ² ×2		
	• ³ evaluate deri	vative	• ³ $-3\sqrt{3}$		
Notes:					
1. Ignore the a	ppearance of $+c$	at any stage.			
2. \bullet^3 is availab	le for evaluating	an attempt at finding	the derivativ	ve at $\frac{\pi}{6}$.	
3. For $h'\left(\frac{\pi}{6}\right) =$	$= 3\cos\left(2\times\frac{\pi}{6}\right) = \frac{3}{2}$	award 0/3.		U	
Commonly Obse	erved Responses:				
Candidate A -3 sin 2x	• ¹ 🗸	Candidate B 3 sin 2 x	• ¹ ×	Candidate C 3sin2x	• ¹ x
$\dots \times \frac{1}{2}$	• ² ×	×2	• ² 🗸	$\dots \times \frac{1}{2}$	2 x
$-\frac{3\sqrt{3}}{4}$	• ³ <mark>✓ 1</mark>	3√3	• ³ \checkmark 1 $\frac{3\sqrt{3}}{4}$ • ³ \checkmark 1		
Candidate D	4	Candidate E	1	Candidate F	1
$\pm 6\cos 2x$	• ¹ ¥ • ² ¥	$\pm 3\cos 2x$ ×2	$\bullet^1 \mathbf{x}$ $\bullet^2 \mathbf{x} 1$	0.5111 2.7	¹ x ² ✓
±3	• ³ <mark>√ 1</mark>	±3	• ³ 1	_	³ 🖌 1

	Question	Generic scheme	Illustrative scheme	Max mark	
4.		• ¹ state centre of circle	• ¹ (6,3)	4	
		• ² find gradient of radius	• ¹ (6,3) • ² -4		
		• ³ state gradient of tangent	$e^{3} \frac{1}{4}$		
		• ⁴ state equation of tangent	•4 $y = \frac{1}{4}x - 7$		
Not	es:			•	
1.	Accept $-\frac{8}{2}$	for ● ² .			
2. 3.					
4.	At • ⁴ accept $y - \frac{1}{4}x + 7 = 0$, $4y = x - 28$, $x - 4y - 28 = 0$ or any other rearrangement of the				
	equation where the constant terms have been simplified.				
Cor	Commonly Observed Responses:				

(Question	Generic scheme	Illustrative scheme	Max mark			
5.	(a)	• ¹ state ratio explicitly	• ¹ 4:1	1			
Not	Notes:						
1. 2.	 The only acceptable variations for •¹ must be related explicitly to AB and BC. For ^{BC}/_{AB} = ¹/₄, ^{AB}/_{BC} = ⁴/₁ or BC : AB = 1:4 award 1/1. For BC = ¹/₄AB award 0/1. 						
Cor	nmonly Obse	rved Responses:					
	(b)	\bullet^2 state value of t	•2 8	1			
Not	es:						
3.	3. The answer to part (b) must be consistent with a ratio stated in part (a) unless a valid strategy which does not require the use of their ratio from part (a) is used.						
Cor	Commonly Observed Responses:						
	ndidate A		andidate B				
1:4 t =			$\begin{array}{c} \cdot 4 \\ = 5 \end{array} \qquad \begin{array}{c} \bullet^1 \\ \bullet^2 \\ \checkmark 1 \end{array}$				

Question	Generic scheme	Illustrat	ive scheme	Max mark
6.	• ¹ apply $m \log_5 x = \log_5 x^m$	• $\log_5 8^{\frac{1}{3}}$		3
	• ² apply $\log_5 x - \log_5 y = \log_5 \frac{x}{y}$	$\bullet^2 \log_5\left(\frac{250}{8^{\frac{1}{3}}}\right)$		
	• ³ evaluate log	• ³ 3		
Notes:		·		
Candidate B 2. Do not pena	working must be equivalent to the lise the omission of the base of the no working award 0/3.			r see
Commonly Obse	erved Responses:			
Candidate A		Candidate B		
$\log_5 250 - \log_5 \frac{8}{3}$	• ¹ x	$\frac{1}{3}\log_5(250\div8)$		
$\log_5 \frac{250}{\frac{8}{3}}$	• ² ✓ 1	$\frac{1}{3}\log_5\frac{125}{4}$		
$\log_5 \frac{375}{4}$	• ³ <mark>✓ 2</mark>	$\log_5\left(\frac{125}{4}\right)^{\frac{1}{3}}$	Award 1/3 🖌 1	* ^
			 I is awarded final two lines of v 	

Question	Generic scheme	Illustrative scheme	Max mark			
7. (a)	• ¹ state coordinates of P	• ¹ (0,5)	1			
Notes:	Notes:					
1. Accept ' $x =$ 2. ' $y = 5$ ' alor	0 , $y = 5$ '. The or '5' does not gain \bullet^1 .					
Commonly Obse	erved Responses:					
(b)	• ² differentiate	• ² $3x^2 - 6x + 2$	3			
	• ³ calculate gradient	• ³ 2				
	• ⁴ state equation of tangent	•4 $y=2x+5$				
Notes:						
 At •⁴ accept y-2x=5, 2x-y+5=0, y-5=2x or any other rearrangement of the equation where the constant terms have been simplified. •⁴ is only available if an attempt has been made to find the gradient from differentiation. 						
Commonly Observed Responses:						

Question	Generic scheme	Illustrative scheme	Max mark	
7. (c)	• ⁵ set $y_{\text{line}} = y_{\text{curve}}$ and arrange in standard form	$\bullet^5 x^3 - 3x^2 = 0$	4	
	• ⁶ factorise	• $x^2(x-3)$		
	\bullet^7 state x-coordinate of Q	•7 3		
	• ⁸ calculate <i>y</i> -coordinate of Q	• ⁸ 11		
Notes:	•			
 6. •⁷ and •⁸ are simultaneou 7. For an answ 8. For an answ 9. For an answ on both line 10. For candida 	 simultaneously. 7. For an answer of (3,11) with no working award 0/4. 8. For an answer of (3,11) verified in both equations award 3/4. 			
Commonly Obse	erved Responses:			
Candidate A $x^3 - 3x^2 = 0$ x - 3 = 0 x = 3 y = 11 Dividing by x^2 is	• ⁵ \checkmark • ⁶ \checkmark • ⁸ \checkmark s valid since $x \neq 0$ at • ⁶			

Question	Generic scheme	Illustrative scheme Max mark
8.	• ¹ determine the gradient of the l	ine $\bullet^1 m = \sqrt{3}$ or $\tan \theta = \sqrt{3}$ 2
	• ² determine the angle	• ² 60° or $\frac{\pi}{3}$
Notes:		
1. Do not pena	lise the omission of units at \bullet^2 .	
2. For 60° or -	$\frac{\pi}{3}$ without working award 2/2.	
Commonly Obse	erved Responses:	
Candidate A		Candidate B
$y = \sqrt{3}x + 5$	Ignore incorrect	$m = \sqrt{3}$ • ¹ \checkmark
processing of the		$\theta = \tan \sqrt{3}$ • ² *
	constant term	$\theta = 60^{\circ}$
$m = \sqrt{3}$		Stating tan rather than \tan^{-1}
60°	• ² ✓	See general marking principle (g)

(Question	Generic scheme	Illustrative scheme	Max mark	
9.	(a)	• ¹ identify pathway	• ¹ $-t+u$	1	
Not	es:				
Con	nmonly Obse	erved Responses:			
	(b)	• ² state an appropriate pathway	• ² eg $\frac{1}{2}\overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AD}$ stated or implied by • ³	2	
		• ³ express pathway in terms of t , u and v	$\bullet^3 -\frac{1}{2}\mathbf{t} - \frac{1}{2}\mathbf{u} + \mathbf{v}$		
Not	es:				
1.	There is no	need to simplify the expression at $ullet$	E. Eg $\frac{1}{2}(-t+u)-u+v$.		
2. 3. 4.	 •³ is only available for using a valid pathway. The expression at •³ must be consistent with the candidate's expression at •¹. 				
Con	Commonly Observed Responses:				
	Candidate A $\overrightarrow{MD} = -\frac{1}{2}\mathbf{t} + \mathbf{v} - \mathbf{u}$ $\mathbf{e}^2 \wedge \mathbf{e}^3 \mathbf{x}$				

Question	Generic scheme	Illustrative scheme	Max mark
10.	• ¹ know to and integrate one term	• $eg 2x^3$	4
	• ² complete integration	• ² eg $-\frac{3}{2}x^2 + 4x + c$	
	• ³ substitute for x and y	• ³ $14 = 2(2)^3 - \frac{3}{2}(2)^2 + 4(2) + c$	
	• ⁴ state equation	• $y = 2x^3 - \frac{3}{2}x^2 + 4x - 4$ stated explicitly	

Notes:

- 1. For candidates who make no attempt to integrate to find y in terms of x award 0/4.
- 2. For candidates who omit +c, only \bullet^1 is available.
- 3. Candidates must attempt to integrate both terms containing x for \bullet^3 and \bullet^4 to be available. See Candidate B.
- 4. For candidates who differentiate any term, $\bullet^2 \bullet^3$ and \bullet^4 are not available.
- 5. •⁴ is not available for 'f(x) = ...'.
- 6. Candidates must simplify coefficients in <u>their</u> final line of working for the last mark available in that line of working to be awarded.

Commonly Observed Responses:

Candidate A		Candidate B - partial integ	ration
$y = 2x^3 - \frac{3}{2}x^2 + 4x + c$	● ¹ ✓ ● ² ✓	$y = 2x^3 - \frac{3}{2}x^2 + 4 + c$	• ¹ ✓ • ² ×
$y = 2(2)^{3} - \frac{3}{2}(2)^{2} + 4(2) + c$		$14 = 2(2)^{3} - \frac{3}{2}(2)^{2} + 4 + c$	• ³ <mark>√ 1</mark>
<i>c</i> = -4	● ³ ✓ substitution	<i>c</i> = 0	
	for y implied by $c = -4$	$y = 2x^3 - \frac{3}{2}x^2 + 4$	• ⁴ <mark>✓ 1</mark>

Question	Generic scheme	Illustrative scheme	Max mark
11. (a)	• ¹ curve reflected in <i>x</i> -axis and translated 1 unit vertically	• ¹ a generally decreasing curve above the <i>x</i> -axis for $1 < x < 3$	2
	• ² accurate sketch	• ² asymptote at $x = 0$ and passing through (3,0) and continuing to decrease for $x \ge 3$	
Notes:			•
2. For a single	empt which involves a horizontal tra transformation award 0/2. Empt involving a reflection in the lir	anslation or reflection in the y-axis award 0 ne $y = x$ award 0/2)/2.
Commonly Obse	erved Responses:		
(1, -1)	(3, -2) Award 1/2		
(b)	• 3 set ' $y = y$ '	• ³ $\log_3 x = 1 - \log_3 x$	3
	• ⁴ start to solve	• $\log_3 x = \frac{1}{2}$ or $\log_3 x^2 = 1$	
	• ⁵ state <i>x</i> coordinate	• ⁵ $\sqrt{3}$ or $3^{\frac{1}{2}}$	
Notes:			
 Do not pena For a solution If a candidation 	nplied by $\log_3 x = \frac{1}{2}$ from symmetry lise the omission of the base of the on which equates a to $\log_3 a$, the te considers and then does not disc	logarithm at \bullet^3 or \bullet^4 .	ailable.
•			

Question	Generic scheme	Illustrative scheme	Max mark	
12. (a)	• ¹ find components		1	
Notes:				
1. Accept 6 i –	3j + (4+p)k for • ¹ .			
2. Do not acce	pt $\begin{pmatrix} 6\mathbf{i} \\ -3\mathbf{j} \\ (4+p)\mathbf{k} \end{pmatrix}$ or $6\mathbf{i}-3\mathbf{j}+4\mathbf{k}+p\mathbf{k}$ fo	r \bullet^1 . However \bullet^2 , \bullet^3 and \bullet^4 are still avail	able.	
Commonly Obse	erved Responses:			
	1		1	
(b)	• ² find an expression for magnitude	• ² $\sqrt{6^2 + (-3)^2 + (4+p)^2}$	3	
	• ³ start to solve	• ³ 45+(4+p) ² = 49 \Rightarrow (4+p) ² = 4 or p ² +8p+12=0		
	• ⁴ find values of p	•4 $p = -2, p = -6$		
Notes:	ł	ł	1	
magnitude. awarded.	magnitude. Eg $\sqrt{6^2 + -3^2 + (4+p)^2}$ or $\sqrt{6^2 - 3^2 + (4+p)^2}$ leading to $\sqrt{45 + (4+p)^2}$, \bullet^2 is awarded.			
Commonly Obse	erved Responses:			
Candidate A $\begin{pmatrix} 6 \\ -3 \\ 4+p \end{pmatrix}$ $\sqrt{6^2 - 3^2 + (4+p)^2}$ $27 + (4+p)^2 = 42$ $(4+p)^2 = 22$ $p = -4 \pm \sqrt{22}$	$\bullet^{1} \checkmark \qquad $	andidate B $\begin{pmatrix} 6 \\ -3 \\ 4 + p \end{pmatrix}$ $\bullet^{1} \checkmark$ $\bullet^{2} \times \bullet^{2} + (-3)^{2} + p^{2}$ $\bullet^{2} \times \bullet^{2} \times \bullet^{2} = \pm 2$ $\bullet^{3} \checkmark 2$ $\bullet^{4} \checkmark 1$		

Question	Generic scheme	Illustrative scheme	Max mark
13. (a) (i)	• ¹ find the value of $\cos x$	• ¹ $\frac{\sqrt{7}}{\sqrt{11}}$ stated or implied by • ²	3
	• ² substitute into the formula for sin2x	• ² $2 \times \frac{2}{\sqrt{11}} \times \frac{\sqrt{7}}{\sqrt{11}}$	
	• ³ simplify	$ \sqrt{11} \sqrt{11} $ $ \bullet^{3} \frac{4\sqrt{7}}{11} $	
(ii)	• ⁴ evaluate $\cos 2x$	• $\frac{3}{11}$	1
Notes:			
candidate	andidate substitutes an incorrect value t has previously stated this incorrect valu vailable as a consequence of substitutir	e or it can be implied by a diagram.	e
 candidate •³ is only a Do not per question. 	has previously stated this incorrect valu vailable as a consequence of substitutin alise trigonometric ratios which are less	e or it can be implied by a diagram. g into a valid formula at \bullet^2 .	
 candidate •³ is only a Do not per question. 	has previously stated this incorrect valu vailable as a consequence of substitutir	e or it can be implied by a diagram. g into a valid formula at \bullet^2 .	
 candidate •³ is only a Do not per question. 	has previously stated this incorrect valu vailable as a consequence of substitutin alise trigonometric ratios which are less	e or it can be implied by a diagram. g into a valid formula at • ² . s than -1 or greater than 1 throughout t	
candidate 2. • ³ is only a 3. Do not per question. Commonly Ob	has previously stated this incorrect value vailable as a consequence of substitutin nalise trigonometric ratios which are less served Responses:	e or it can be implied by a diagram. g into a valid formula at \bullet^2 . s than -1 or greater than 1 throughout t $\bullet^5 \sin 2x \cos x + \cos 2x \sin x$ stated or	his
candidate 2. • ³ is only a 3. Do not per question. Commonly Ob	has previously stated this incorrect value vailable as a consequence of substitutine valise trigonometric ratios which are less served Responses: • ⁵ expand using the addition formula	e or it can be implied by a diagram. g into a valid formula at \bullet^2 . than -1 or greater than 1 throughout t $\bullet^5 \sin 2x \cos x + \cos 2x \sin x$ stated or implied by \bullet^6	his
candidate 2. • ³ is only a 3. Do not per question. Commonly Ob	has previously stated this incorrect value vailable as a consequence of substitution halise trigonometric ratios which are less served Responses: • ⁵ expand using the addition formula • ⁶ substitute in values	e or it can be implied by a diagram. g into a valid formula at \bullet^2 . than -1 or greater than 1 throughout t $\bullet^5 \sin 2x \cos x + \cos 2x \sin x$ stated or implied by \bullet^6 $\bullet^6 \frac{4\sqrt{7}}{11} \times \frac{\sqrt{7}}{\sqrt{11}} + \frac{3}{11} \times \frac{2}{\sqrt{11}}$	his
candidate 2. • ³ is only a 3. Do not per question. Commonly Ob (b) Notes:	has previously stated this incorrect value vailable as a consequence of substitution halise trigonometric ratios which are less served Responses: • ⁵ expand using the addition formula • ⁶ substitute in values	e or it can be implied by a diagram. g into a valid formula at \bullet^2 . than -1 or greater than 1 throughout t $\bullet^5 \sin 2x \cos x + \cos 2x \sin x$ stated or implied by \bullet^6 $\bullet^6 \frac{4\sqrt{7}}{11} \times \frac{\sqrt{7}}{\sqrt{11}} + \frac{3}{11} \times \frac{2}{\sqrt{11}}$ $\bullet^7 \frac{34}{11\sqrt{11}}$	his

Question	Generic scheme	Illustrative scheme	Max mark
14.	• ¹ write in integrable form	• $(2x+9)^{-\frac{2}{3}}$	5
	• ² start to integrate	• ² $\frac{(2x+9)^{\frac{1}{3}}}{\frac{1}{3}}$	
	• ³ complete integration	$\bullet^3 \dots \times \frac{1}{2}$	
	• ⁴ process limits	• $\frac{3}{2}(2(9)+9)^{\frac{1}{3}}-\frac{3}{2}(2(-4)+9)^{\frac{1}{3}}$	
	• ⁵ evaluate integral	• ⁵ 3	
Notes:			
 For candidat award 0/5. •² may be av first attemp If candidate bracket or u For •² to be Do not pena •⁴ and •⁵ are The integral •⁵ is only av Candidate A 	 award 0/5. *² may be awarded for the appearance of (2x+9)^{1/3}/₃ in the line of working where the candidate first attempts to integrate. See Candidate F. If candidates start to integrate individual terms within the bracket or attempt to expand a bracket or use another invalid approach no further marks are available. For *² to be awarded the integrand must contain a non-integer power. Do not penalise the inclusion of '+c'. *⁴ and *⁵ are not available to candidates who substitute into the original function. The integral obtained must contain a non-integer power for *⁵ to be available. *⁵ is only available to candidates who deal with the coefficient of x at the *³ stage. See 		
	erved Responses:		
Candidate A $(2x+9)^{-\frac{2}{3}}$	•1 🗸	Candidate B $(2x+9)^{\frac{2}{3}}$ • ¹ ×	
$\frac{\left(2x+9\right)^{\frac{1}{3}}}{\frac{1}{3}}$	• ² ✓ • ³ ∧	$\frac{\left(2x+9\right)^{\frac{5}{3}}}{\frac{5}{3}}\times\frac{1}{2}$	1 • ³ ✓
$3(2(9)+9)^{\frac{1}{3}}-3$	$(2(-4)+9)^{\frac{1}{3}}$ • ⁴ \checkmark 1	$\frac{3}{10} (2(9)+9)^{\frac{5}{3}} - \frac{3}{10} (2(-4)+9)^{\frac{5}{3}} \qquad \bullet^{4} \checkmark$	1
6	● ⁵ <mark>✓ 2</mark> see note 9	$\frac{363}{5}$ • ⁵	1

Commonly Observed Responses:			
Candidate C		Candidate D	
$(2x+9)^{-\frac{2}{3}}$	• ¹ ✓	$(2x+9)^{-\frac{2}{3}}$	•1 🗸
$-\frac{5}{3}(2x+9)^{-\frac{5}{3}}\times\frac{1}{2}$	● ² ★ ● ³ ✓	$\frac{(2x+9)^{\frac{1}{3}}}{\frac{1}{3}} \times 2$	• ² 🗸 • ³ 🗴
$\left -\frac{5}{6} \left(2 \left(9 \right) + 9 \right)^{-\frac{5}{3}} - \left(-\frac{5}{6} \left(2 \left(-4 \right) + 9 \right)^{-\frac{5}{3}} \right) \right)^{-\frac{5}{3}} \right $	•4 🗸 1	$6(2(9)+9)^{\frac{1}{3}}-6(2(-4)+9)^{\frac{1}{3}}$	• ⁴ <mark>✓ 1</mark>
$\frac{605}{729}$	● ⁵ <mark>✓ 1</mark>	12	● ⁵ <mark>✓ 1</mark>
Candidate E		Candidate F	
$(2x+9)^{-\frac{3}{2}}$	• ¹ 🗴	$1 \times (2x+9)^{-\frac{2}{3}}$	● ¹ ✓
$\frac{(2x+9)^{-\frac{1}{2}}}{-\frac{1}{2}} \times \frac{1}{2}$	• ² 🔨 1 • ³ 🗸	$x \frac{(2x+9)^{\frac{1}{3}}}{\frac{1}{3}} \times \frac{1}{2}$	• ² ✓
$\left(-(2(9)+9)^{-\frac{1}{2}})-(-(2(-4)+9)^{-\frac{1}{2}})\right)$	● ⁴ <mark>✓ 1</mark>	● ³ ● ⁴ and ● ⁵ are	not available
$-\frac{1}{\sqrt{27}}+1$	•⁵ <mark>✓ 1</mark>		

Question	Generic scheme	Illustrative scheme	Max mark
15.	• ¹ root at $x = -4$ identifiable from graph	•1	4
	• ² stationary point touching <i>x</i> -axis when $x = 2$ identifiable from graph	•2	
	• ³ stationary point when $x = -2$ identifiable from graph	•3	
	• ⁴ identify orientation of the cubic curve and $f'(0) > 0$ identifiable from graph	•4	
Notes:			
 For a diagram which does not show a cubic curve award 0/4. For candidates who identify the roots of the cubic at 'x = -4, -2 and 2' or at 'x = -2, 2 and 4' •⁴ is unavailable. 			
Commonly Obse	Commonly Observed Responses:		

[END OF MARKING INSTRUCTIONS]

Qualifications

2018 Mathematics

Higher - Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2018

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

Detailed marking instructions for each question

Question	Generic scheme	Illustrative scheme	Max mark
1.	 ¹ state an integral to represent the shaded area 	J (4
	• ² integrate	• ² $3x + \frac{2x^2}{2} - \frac{x^3}{3}$	
	• ³ substitute limits	$\bullet^{3}\left(3\times3+\frac{2\times3^{2}}{2}-\frac{3^{3}}{3}\right)$	
		$-\left(3\times\left(-1\right)+\frac{2\times\left(-1\right)^{2}}{2}-\frac{\left(-1\right)^{3}}{3}\right)$	
	• ⁴ evaluate integral	• $\frac{32}{3}$ (units ²)	
Notes:			
 Limits must Where a car Candidates Do not pena Do not pena 	 Limits must appear at the •¹ stage for •¹ to be awarded. Where a candidate differentiates one or more terms at •², then •³ and •⁴ are unavailable. Candidates who substitute limits without integrating, do not gain •³ or •⁴. Do not penalise the inclusion of '+c'. Do not penalise the continued appearance of the integral sign after •¹. 		
Commonly Obse	erved Responses:		
Candidate A $\int_{-1}^{3} 3 + 2x - x^{2}$	• ¹ ×	Candidate B $\int (3+2x-x^2) dx \qquad \bullet^1 \mathbf{x}$	
$\begin{vmatrix} ^{-1} \\ = 3x + \frac{2x^2}{2} - \frac{x^3}{3} \end{vmatrix}$		$\int (3+2x-x^2) dx \qquad \qquad \bullet^1 \mathbf{x}$ $= 3x + \frac{2x^2}{2} - \frac{x^3}{3} \qquad \qquad \bullet^2 \checkmark$	
32		$=9-\left(-\frac{5}{3}\right)$	
$=\frac{32}{3}$	• ⁴ <u>√</u> 1	$=\frac{32}{3}$ • ⁴	

Commonly Observed Responses:			
Candidate C		Candidate D	
$\int (3+2x-x^2) dx$	• ¹ 🗴	$\int_{-\infty}^{-1} (3+2x-x^2) dx$	• ¹ 🗸
$= 3x + \frac{2x^2}{2} - \frac{x^3}{3}$	• ² 🗸	3 	• ² √ • ³ √
$=\left(3\times 3+\frac{2\times 3^2}{2}-\frac{3^3}{3}\right)$		$=-\frac{32}{3}$, hence area is $\frac{32}{3}$	●4 ✓
$\left -\left(3\times\left(-1\right)+\frac{2\times\left(-1\right)^{2}}{2}-\frac{\left(-1\right)^{3}}{3}\right)\right $	• ³ ✓	However $-\frac{32}{3} = \frac{32}{3}$ does not gain of	• ⁴ .
$=\frac{32}{3}$	•4 🗸		

Question	Generic scheme	Illustrative scheme	Max mark
2. (a)	• ¹ find u.v	•1 24	1
Notes:			
Commonly Obse	erved Responses:		
			-
(b)	• ² find $ \mathbf{u} $	• ² \sqrt{26}	4
	• ³ find $ \mathbf{v} $	• ² $\sqrt{26}$ • ³ $\sqrt{138}$	
	• ⁴ apply scalar product	$\bullet^4 \cos \theta^\circ = \frac{24}{\sqrt{26}\sqrt{138}}$	
	• ⁵ calculate angle	• ⁵ 66 · 38° or 1 · 16 radians	
Notes:	L	1	
magnitude. 2. • ⁴ is not ava 3. Accept answ	magnitude. Eg $\sqrt{-1^2 + 4^2 - 3^2} = \sqrt{26}$ or $\sqrt{-1^2 + 4^2 - 3^2} = \sqrt{26}$, \bullet^2 is awarded. 2. \bullet^4 is not available to candidates who simply state the formula $\cos \theta^\circ = \frac{\mathbf{u} \cdot \mathbf{v}}{ \mathbf{u} \mathbf{v} }$. 3. Accept answers which round to 66° or 1.2 radians (or 73.8 gradians).		
-	ailable for a single angle. It answer with no working award 0/4.		
Commonly Obse	erved Responses:		
Candidate A $ \mathbf{u} = \sqrt{26}$ $ \mathbf{v} = \sqrt{138}$ $\frac{24}{\sqrt{26}\sqrt{138}}$	• ² ✓ • ³ ✓ • ⁴ ∧		
$\theta = 66 \cdot 38 \dots^{\circ}$	•5 🖌 1		

Question	Generic scheme	Illustrative sci	heme Max mark
3.	• ¹ differentiate	• $3x^2 - 7$	3
	• ² evaluate derivative at $x = 2$	• ² 5	
	• ³ interpret result	$ullet^3(f)$ is increasing	
Notes:			
2. Accept $f'(x)$ 3. $f'(x) > 0$ w candidate B			
Commonly Observed Responses:			
Candidate A		Candidate B	
$3x^2 - 7$	•1 🗸	$3x^2 - 7$	• ¹ 🗸
$\begin{array}{c c} x & z \\ \hline f'(x) & + \end{array}$	- •² ✓	f'(x) > 0	•2 ^
increasing	•3 🗸	f is increasing	• ³ •

Question	Generic scheme	Illustrative scheme	Max mark
4.	Method 1	Method 1	3
	• ¹ identify common factor	• ¹ $-3(x^2 + 2x$ stated or implied by • ²	
	• ² complete the square	• ² $-3(x+1)^2 \dots$ • ³ $-3(x+1)^2 + 10$	
	• ³ process for c	• 3 -3(x+1) ² +10	
	Method 2	Method 2	
	• ¹ expand completed square form	• $ax^2 + 2abx + ab^2 + c$	
	• ² equate coefficients	• ² $a = -3$, $2ab = -6$ $ab^{2} + c = 7$	
	• ³ process for <i>b</i> and <i>c</i> and write in required form	• $-3(x+1)^2 + 10$	
Notes:			
1. $-3(x+1)^2 + 10$ with no working gains \bullet^1 and \bullet^2 only; however, see Candidate E. 2. \bullet^3 is only available for a calculation involving both multiplication and addition of integers.			
Commonly Observed Responses:			
Candidate A $-3(x^2+2)+7$	exception in General marking principle (h)	Candidate B $-3((x^2-6x)+7)$ • ¹ * $-3((x-2)^2 = 0) + 7$	1
$-3((x+1)^2-1)+$	-7 • ¹ ✓• ² ✓	$-3((x-3)^{2}-9)+7$ $-3(x-3)^{2}+34$ $\bullet^{3} \checkmark 1$	ן ן

Candidate A	Candidate B
$-3(x^2+2)+7$ exception in General	$= \left(\left(\frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \right)$
$ = \frac{1}{-3((x+1)^2-1)+7} $ marking principle (h) $-3((x+1)^2-1)+7$	$-3((x-3)^2-9)+7$ • ² \checkmark 1
	$-3(x-3)^2+34$ • ³ \checkmark 1
Candidate C	Candidate D
$a(x+b)^{2}+c=ax^{2}+2abx+ab^{2}+c \bullet^{1}\checkmark$	$ax^2 + 2abx + ab^2 + c$ • ¹ \checkmark
$a = -3$, $2ab = -6$, $ab^2 + c = 7$ • ² \checkmark	$a = -3, \ 2ab = -6, \ ab^2 + c = 7$ $\bullet^2 \checkmark$
b=1, c=10	b=1, c=10
• ³ is awarded as all working relates to completed square form	• ³ is lost as no reference is made to completed square form

Commonly Observed Respo	nses:		
Candidate E		Candidate F	
$-3(x+1)^{2}+10$		$-3x^2-6x+7$	
Check: $= -3(x^2 + 2x + 1) + 10$		$=-3(x+1)^2-1+7$	• ¹ ✓ • ² ✓
$=-3x^2-6x-3+10$		$=-3(x+1)^2+6$	• ³ x
$=-3x^2-6x+7$			
Award 3/3			
Candidate G			
$-3x^2-6x+7$			
$=x^2+2x-\frac{7}{3}$	• ¹ ¥		
$=(x+1)^2-\frac{10}{3}$	• ² ¥		
$=-3(x+1)^{2}+10$	• ³ ×		

5. (a) • ¹ find the midpoint of PQ • ¹ (6,1) 3 • ² calculate m_{PQ} and state perp. gradient • ³ find equation of L ₁ in a simplified • ³ $y = x - 5$ Notes: 1. • ³ is only available as a consequence of using a perpendicular gradient and a midpoint. 2. The gradient of the perpendicular bisector must appear in simplified form at • ³ or • ³ stage for • to be awarded. 3. At • ³ , accept $x - y - 5 = 0$, $y - x = -5$ or any other rearrangement of the equation where the constant terms have been simplified. Commonly Observed Responses: (b) • ⁴ determine y coordinate • ⁵ 10 Notes: (c) • ⁶ calculate radius of the circle • ⁶ $\sqrt{50}$ stated or implied by • ⁷ 2 • ⁷ state equation of the circle • ⁶ $\sqrt{50}$ stated or implied by • ⁷ 2 • ⁷ state equation of the circle • ⁶ $\sqrt{50}$ stated or implied by • ⁷ 2 • ⁷ state equation of the circle • ⁶ $\sqrt{50}$ stated or implied by • ⁷ are available for using either PC or QC for the radius. 5. Where candidates have calculated the coordinates of C incorrectly, • ⁶ and • ⁷ are available for using either PC or QC for the radius. 5. Where incorrect coordinates for C appear without working, only • ⁷ is available. 6. Do not accept $(\sqrt{50})^2$ for • ⁷ . Commonly Observed Responses:	Question	Generic scheme	Illustrative scheme	Max mark					
gradient • ³ find equation of L, in a simplified • ³ $y=x-5$ Notes: • ³ is only available as a consequence of using a perpendicular gradient and a midpoint. 2. The gradient of the perpendicular bisector must appear in simplified form at • ² or • ³ stage for • to be awarded. 3. At • ³ , accept $x-y-5=0$, $y-x=-5$ or any other rearrangement of the equation where the constant terms have been simplified. Commonly Observed Responses: • ⁴ 5 2 (b) • ⁴ determine y coordinate • ⁵ 10 2 Notes: • ⁵ state x coordinate • ⁵ 10 2 (c) • ⁶ calculate radius of the circle • ⁶ $\sqrt{50}$ stated or implied by • ⁷ 2 • ⁷ state equation of the circle • ⁶ $\sqrt{50}$ stated or implied by • ⁷ 2 • ⁷ state equation of the circle • ⁷ $(x-10)^2 + (y-5)^2 = 50$ 2 Notes: • • • • 4. Where candidates have calculated the coordinates of C incorrectly, • ⁶ and • ⁷ are available for using either PC or QC for the radius. • • 5. Where incorrect coordinates for C appear without working, only • ⁷ is available. • • • 6. Do not accept $(\sqrt{50})^2$ for • ⁷ . • • • • 0. Donot accept $(\sqrt{50}$	5. (a)	• ¹ find the midpoint of PQ	• ¹ (6,1)	3					
Image: Indecidation of L_1 in a simplified Image: I			• ² $-1 \Longrightarrow m_{\text{perp}} = 1$						
1. • ³ is only available as a consequence of using a perpendicular gradient and a midpoint. 2. The gradient of the perpendicular bisector must appear in simplified form at * ² or * ³ stage for • to be awarded. 3. At • ³ , accept $x - y - 5 = 0$, $y - x = -5$ or any other rearrangement of the equation where the constant terms have been simplified. Commonly Observed Responses: (b) • ⁴ determine y coordinate • ⁴ 5 2 • ⁵ state x coordinate • ⁵ 10 2 Notes: (c) • ⁶ calculate radius of the circle • ⁶ $\sqrt{50}$ stated or implied by • ⁷ 2 • ⁷ state equation of the circle • ⁷ $(x-10)^2 + (y-5)^2 = 50$ 2 Notes: 4. Where candidates have calculated the coordinates of C incorrectly, • ⁶ and • ⁷ are available for using either PC or QC for the radius. 5. Where incorrect coordinates for C appear without working, only • ⁷ is available. 6. Do not accept $(\sqrt{50})^2$ for • ⁷ .			• ³ $y = x - 5$						
2. The gradient of the perpendicular bisector must appear in simplified form at $*^2$ or $*^3$ stage for to be awarded. 3. At $*^3$, accept $x - y - 5 = 0$, $y - x = -5$ or any other rearrangement of the equation where the constant terms have been simplified. Commonly Observed Responses: (b) $*^4$ determine y coordinate $*^4$ 5 2 $*^5$ state x coordinate $*^5$ 10 2 Notes: (c) $*^6$ calculate radius of the circle $*^6$ $\sqrt{50}$ stated or implied by $*^7$ 2 $*^7$ state equation of the circle $*^6$ $\sqrt{50}$ stated or implied by $*^7$ 2 Notes: 4. Where candidates have calculated the coordinates of C incorrectly, $*^6$ and $*^7$ are available for using either PC or QC for the radius. 5. Where incorrect coordinates for C appear without working, only $*^7$ is available. 6. Do not accept $(\sqrt{50})^2$ for $*^7$.	Notes:								
(b) e^{4} determine y coordinate e^{5} state x coordinate e^{5} 10 Notes: Commonly Observed Responses: (C) e^{6} calculate radius of the circle e^{7} $\sqrt{50}$ stated or implied by e^{7} e^{7} state equation of the circle e^{7} $(x-10)^{2} + (y-5)^{2} = 50$ Notes: 4. Where candidates have calculated the coordinates of C incorrectly, e^{6} and e^{7} are available for using either PC or QC for the radius. 5. Where incorrect coordinates for C appear without working, only e^{7} is available. 6. Do not accept $(\sqrt{50})^{2}$ for e^{7} .	 The gradien to be award At •³, accep 	t of the perpendicular bisector must appled. In $x-y-5=0$, $y-x=-5$ or any other	ppear in simplified form at \bullet^2 or \bullet^3 stage						
\bullet^5 state x coordinate \bullet^5 10 Notes: \bullet^5 10 (c) \bullet^6 calculate radius of the circle \bullet^6 $\sqrt{50}$ stated or implied by \bullet^7 2 \bullet^7 state equation of the circle \bullet^6 $\sqrt{50}$ stated or implied by \bullet^7 2 Notes: \bullet^7 (x-10) ² + (y-5) ² = 50 2 Notes: \bullet^7 (x-10) ² + (y-5) ² = 50 2 Notes: \bullet^7 (x-10) ² + (y-5) ² = 50 2 A. Where candidates have calculated the coordinates of C incorrectly, \bullet^6 and \bullet^7 are available for using either PC or QC for the radius. 5. Where incorrect coordinates for C appear without working, only \bullet^7 is available. 6. Do not accept $(\sqrt{50})^2$ for \bullet^7 .	Commonly Obse	erved Responses:							
• ⁵ state x coordinate • ⁵ 10 Notes: • ⁵ 10 (c) • ⁶ calculate radius of the circle • ⁶ $\sqrt{50}$ stated or implied by • ⁷ 2 • ⁷ state equation of the circle • ⁷ $(x-10)^2 + (y-5)^2 = 50$ 2 Notes: • ⁷ (x-10) ² + (y-5) ² = 50 2 Notes: • ⁶ Or the radius. • ⁶ Or the radius. • ⁶ Or the radius. 5. Where incorrect coordinates for C appear without working, only • ⁷ is available. • ⁷ Or • ⁷ .	(1.)	4	4 -	-					
Notes: (c) • ⁶ calculate radius of the circle • ⁷ state equation of the circle • ⁷ $(x-10)^2 + (y-5)^2 = 50$ Notes: 4. Where candidates have calculated the coordinates of C incorrectly, • ⁶ and • ⁷ are available for using either PC or QC for the radius. 5. Where incorrect coordinates for C appear without working, only • ⁷ is available. 6. Do not accept $(\sqrt{50})^2$ for • ⁷ .	(D)	• ⁴ determine <i>y</i> coordinate		Z					
Commonly Observed Responses: (c) • ⁶ calculate radius of the circle • ⁶ $\sqrt{50}$ stated or implied by • ⁷ 2 • ⁷ state equation of the circle • ⁷ $(x-10)^2 + (y-5)^2 = 50$ 2 Notes: 4. Where candidates have calculated the coordinates of C incorrectly, • ⁶ and • ⁷ are available for using either PC or QC for the radius. 5. Where incorrect coordinates for C appear without working, only • ⁷ is available. 6. Do not accept $(\sqrt{50})^2$ for • ⁷ .		• ⁵ state x coordinate	• ⁵ 10						
(C) \bullet^6 calculate radius of the circle \bullet^6 $\sqrt{50}$ stated or implied by \bullet^7 2 \bullet^7 state equation of the circle \bullet^7 $(x-10)^2 + (y-5)^2 = 50$ 2Notes:4. Where candidates have calculated the coordinates of C incorrectly, \bullet^6 and \bullet^7 are available for using either PC or QC for the radius.5. Where incorrect coordinates for C appear without working, only \bullet^7 is available.6. Do not accept $(\sqrt{50})^2$ for \bullet^7 .	Notes:								
(C) \bullet^6 calculate radius of the circle \bullet^6 $\sqrt{50}$ stated or implied by \bullet^7 2 \bullet^7 state equation of the circle \bullet^7 $(x-10)^2 + (y-5)^2 = 50$ 2Notes:4. Where candidates have calculated the coordinates of C incorrectly, \bullet^6 and \bullet^7 are available for using either PC or QC for the radius.5. Where incorrect coordinates for C appear without working, only \bullet^7 is available.6. Do not accept $(\sqrt{50})^2$ for \bullet^7 .									
• ⁷ state equation of the circle • ⁷ $(x-10)^2 + (y-5)^2 = 50$ Notes: 4. Where candidates have calculated the coordinates of C incorrectly, • ⁶ and • ⁷ are available for using either PC or QC for the radius. 5. Where incorrect coordinates for C appear without working, only • ⁷ is available. 6. Do not accept $(\sqrt{50})^2$ for • ⁷ .		erved Responses:							
 Notes: 4. Where candidates have calculated the coordinates of C incorrectly, ●⁶ and ●⁷ are available for using either PC or QC for the radius. 5. Where incorrect coordinates for C appear without working, only ●⁷ is available. 6. Do not accept (√50)² for ●⁷. 	(C)	• ⁶ calculate radius of the circle	• ⁶ $\sqrt{50}$ stated or implied by • ⁷	2					
 Where candidates have calculated the coordinates of C incorrectly, ●⁶ and ●⁷ are available for using either PC or QC for the radius. Where incorrect coordinates for C appear without working, only ●⁷ is available. Do not accept (√50)² for ●⁷. 		$ullet^7$ state equation of the circle	• ⁷ $(x-10)^2 + (y-5)^2 = 50$						
using either PC or QC for the radius. 5. Where incorrect coordinates for C appear without working, only \bullet^7 is available. 6. Do not accept $(\sqrt{50})^2$ for \bullet^7 .	Notes:	I							
	using either	using either PC or QC for the radius.							
Commonly Observed Responses:	5. Do not accept $\left(\sqrt{50}\right)^2$ for \bullet^7 .								
	Commonly Obse	erved Responses:							

	Question Generic scheme		Generic scheme	Illustrative scheme	Max mark
6.	(a)	(i)	• ¹ start composite process	• ¹ $f(2x)$	2
			• ² substitute into expression	• ² $3 + \cos 2x$	
		(ii)	• ³ state second composite	• ³ 2(3+cos x)	1
Not	tes:	•			
1. 2.		dates		nd \bullet^2 . In as either $g(x) \times f(x)$ or $g(x) + f(x)$ do	o not
Cor	nmonly	v Obse	erved Responses:		
Car	ndidate	A - ir	terpret $f(g(x))$ as $g(f(x))$	andidate B - interpret $f(g(x))$ as $g(f(x))$	(x))
(i)	2(3+co)	$(x \cos x)$	• ¹ ≭ • ² ✓ 1 (i) $f(2x) = 2(3 + \cos x)$ • ¹ • • ² *	
(ii)	$3 + \cos \theta$	52 <i>x</i>	• ³ 🖌 1 (i	i) $3 + \cos(2x)$ • ³ \checkmark 1	

Question	Generic scheme	Illustrative scheme	Max mark
6. (b)	\bullet^4 equate expressions from (a)	$\bullet^4 3 + \cos 2x = 2(3 + \cos x)$	6
	• ⁵ substitute for $\cos 2x$ in equation	• ⁵ 3+2cos ² x-1=2(3+cos x)	
	• arrange in standard quadratic form	• ⁶ $2\cos^2 x - 2\cos x - 4 = 0$	
	• ⁷ factorise	• ⁷ $2(\cos x - 2)(\cos x + 1)$	
	• ⁸ solve for $\cos x$	$\bullet^8 \cos x = 2 \qquad \qquad \bullet^9 \cos x = -1$	
	• ⁹ solve for <i>x</i>	• $cos x = 2$ $x = \pi$ or eg 'no solution'	

Notes:

- 3. Do not penalise absence of common factor at \bullet^7 .
- 4. •⁵ cannot be awarded until the equation reduces to a quadratic in $\cos x$.
- 5. Substituting $2\cos^2 A 1$ or $2\cos^2 \alpha 1$ at \bullet^5 stage should be treated as bad form provided the equation is written in terms of x at \bullet^6 stage. Otherwise, \bullet^5 is not available.
- 6. = 0 must appear by \bullet^7 stage for \bullet^6 to be awarded. However, for candidates using the quadratic formula to solve the equation, = 0 must appear at \bullet^6 stage for \bullet^6 to be awarded.
- 7. For candidate who do not arrange in standard quadratic form, eg $-2\cos x + 2\cos^2 x 4 = 0$ •⁶ is only available if •⁷ has been awarded.
- 8. $\bullet^7 \bullet^8$ and \bullet^9 are only available as a consequence of solving a quadratic with distinct real roots.
- 9. •⁷ •⁸ and •⁹ are not available for any attempt to solve a quadratic equation written in the form $ax^2 + bx = c$.
- 10. •⁹ is not available to candidates who work in degrees and do not convert their solution(s) into radian measure.
- 11. Answers written as decimals should be rounded to no fewer than 2 significant figures.
- 12. •⁹ is not available for any solution containing angles outwith the interval $0 \le x < 2\pi$.

Commonly Observed Responses:	ommonly Observed Responses:					
Candidate C Quadratic expressed in terms of c or x. $3 + \cos 2x = 2(3 + \cos x)$ $4^{4} \checkmark$ $3 + 2\cos^{2} x - 1 = 2(3 + \cos x)$ $5^{5} \checkmark$ $2\cos^{2} x - 2\cos x - 4 = 0$ $6^{6} \checkmark$ $2c^{2} - 2c - 4 = 0$ $2(c-2)(c+1) = 0$ $7^{7} \checkmark$ $c = 2$, $c = -1$ $8^{8} \times$ no solution, $x = \pi$ $9^{9} \checkmark$ However, $4^{4} \checkmark 6^{5} \checkmark 6^{6} \checkmark$	Candidate D $3 + \cos 2x = 2(3 + \cos x)$ $3 + 2\cos^2 x - 1 = 2(3 + \cos x)$ $5 \checkmark$ $2\cos^2 x - 2\cos x = 4$ $\cos^2 x - \cos x = 2$ $\cos x (\cos x - 1) = 2$ $\cos x = 2, \cos x - 1 = 2$ $\cos x = 2, \cos x = 3$ no solutions $9^9 \times$ see note 9					
$2(c-2)(c+1) = 0 \qquad \bullet^7 \checkmark$ $\cos x = 2 \qquad \cos x = -1 \qquad \bullet^8 \checkmark$ Solution stated in terms of $\cos x$ explicitly						
Candidate E - reading $\cos 2x$ as $\cos^2 x$ $3 + \cos^2 x = 2(3 + \cos x)$ • ⁴ × • ⁵ • - no substitution required $\cos^2 x - 2\cos x - 3 = 0$ • ⁶ • 1 $(\cos x - 3)(\cos x + 1)$ • ⁷ • 1 $\cos x = 3$, $\cos x = -1$ • ⁸ • 1 no solution, $x = \pi$ • ⁹ • 1	Candidate F - using quadratic formula $4 \checkmark 6^{5} \checkmark$ $2\cos^{2} x - 2\cos x - 4 = 0$ $\cos x = \frac{2 \pm \sqrt{36}}{4}$ or $\cos x = \frac{1 \pm \sqrt{9}}{2}$ $6 \checkmark$					

	Question	Generic scheme	Illustrative scheme	Max mark
7.	(a) (i)	 ¹ use '2' in synthetic division or in evaluation of cubic 	• ¹ 2 2 -3 -3 2 2	2
		• ² complete division/evaluation and interpret result	or $2 \times (2)^3 - 3(2)^2 - 3 \times (2) + 2$ • ² 2 2 2 -3 -3 2 <u>4 2 -2</u> 2 1 -1 0 Remainder = 0 $\therefore (x-2)$ is a factor or $f(2) = 0 \therefore (x-2)$ is a factor	
	(ii)	• ³ state quadratic factor	• $^{3} 2x^{2} + x - 1$	2
		• ⁴ complete factorisation	• $(x-2)(2x-1)(x+1)$ stated explicitly	
Not	es:	•	•	
2. 3.	Accept any • ' $f(2)$ • 'since • the 0 ' \Rightarrow ' Do not acce • doub • ' $x =$ • ($x -$ • the w	pt any of the following for \bullet^2 : le underlining the zero or boxing the zero -2 is a factor', ' $(x+2)$ is a factor', ' (2) is a root', ' $x = -2$ is a root' word 'factor' only, with no link.	actor' by e.g. 'so', 'hence', ' \therefore ', ' $ ightarrow$ ', ero without comment	
Cor		erved Responses:		
7.	(b)	• ⁵ demonstrate result	• ⁵ $u_6 = a(2a-3)-1=2a^2-3a-1$ leading to $u_7 = a(2a^2-3a-1)-1$ $= 2a^3-3a^2-a-1$	1
Not	es:	l	I	
Cor	mmonly Obse	erved Responses:		

Question	Generic scheme	Illustrative scheme	Max mark
7. (c) (i)	• ⁶ equate u_5 and u_7 and arrange standard form		3
	• ⁷ solve cubic	• ⁷ $a=2, a=\frac{1}{2}, a=-1$	
	• ⁸ discard invalid solutions for a	• ⁸ $a=\frac{1}{2}$	
(ii)	• ⁹ calculate limit	•9 -2	1
Notes:			
However, se factorising t solutions ap	e Candidates B and C. BEWARE: Ca	solutions in terms of x appearing in a(ii). andidates who make a second attempt at incorrectly cannot be awarded mark 7 for an \bullet^7 .	
6. $x = \frac{1}{2}$ does			
7. For candidat		ation at • ⁶ , and adopt a guess and check may gain 3/3. See Candidate D.	
Commonly Obse	erved Responses:		
Candidate A $2a^3 - 3a^2 - 3a +$	2 = 0 ● ⁶ ✓	Candidate B - missing '= 0' from equatio $2a^3 - 3a^2 - 3a + 2$ • ⁶	
$x = 2, x = \frac{1}{2}, x$	$= -1$ in a(ii) $\bullet^7 \checkmark \bullet^8 \land$	$2a^3 - 3a^2 - 3a + 2$ • ⁶ $x = 2, x = \frac{1}{2}, x = -1$ in a(ii) • ⁷	✓ 1
		$a = \frac{1}{2} \qquad \qquad \bullet^8$	✓ 1
Candidate C - missing $= 0$ from equation		Candidate D - $x = -1$, $x = \frac{1}{2}$ and $x = 2$ identified in a(ii)	
$2a^3 - 3a^2 - 3a + 3a^3 - 3a + 3a^3 - 3a + 3a^3 - 3a^3 -$		$u_5 = 2\left(\frac{1}{2}\right) - 3 = -2 \qquad \qquad \bullet^6$	✓
$x=2, x = \frac{1}{2}, x=-1 \text{ in a(ii)} \qquad 0^{7} \land \frac{1}{2} \qquad 0^{8} \land$		$u_7 = 2\left(\frac{1}{2}\right)^3 - 3\left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right) - 1 = -2$ \bullet^7	~
2	No clear link between a and x .	$a = \frac{1}{2}$ because $-1 < a < 1$ • ⁸	~

Question	Generic scheme	Illustrative scheme	Max mark
8. (a)	• ¹ use compound angle formula	• ¹ $k \cos x^{\circ} \cos a^{\circ} + k \sin x^{\circ} \sin a^{\circ}$ stated explicitly	4
	• ² compare coefficients	• ² $k \cos a^\circ = 2$ and $k \sin a^\circ = -1$ stated explicitly	
	• ³ process for k	• ³ $k = \sqrt{5}$	
	• ⁴ process for <i>a</i> and express in required form	• ⁴ $\sqrt{5}\cos(x-333\cdot4)^\circ$	

Notes:

- Accept $k(\cos x^{\circ} \cos a^{\circ} + \sin x^{\circ} \sin a^{\circ})$ for \bullet^{1} . Treat $k \cos x^{\circ} \cos a^{\circ} + \sin x^{\circ} \sin a^{\circ}$ as bad form only 1. if the equations at the \bullet^2 stage both contain k.
- 2. Do not penalise the omission of degree signs.
- $\sqrt{5}\cos x^{\circ}\cos a^{\circ} + \sqrt{5}\sin x^{\circ}\sin a^{\circ}$ or $\sqrt{5}(\cos x^{\circ}\cos a^{\circ} + \sin x^{\circ}\sin a^{\circ})$ is acceptable for \bullet^{1} and \bullet^{3} . 3.
- •² is not available for $k \cos x^\circ = 2$, $k \sin x^\circ = -1$, however •⁴ may still be gained. •³ is only available for a single value of k, k > 0. 4.
- 5.
- 6. •⁴ is not available for a value of *a* given in radians.
- 7. Accept any value of a which rounds to 333°
- 8. Candidates may use any form of the wave function for \bullet^1 , \bullet^2 and \bullet^3 , however, \bullet^4 is only available if the wave is interpreted in the form $k\cos(x-a)^{\circ}$.
- 9. Evidence for \bullet^4 may not appear until part (b).

Commonly Observed Responses:

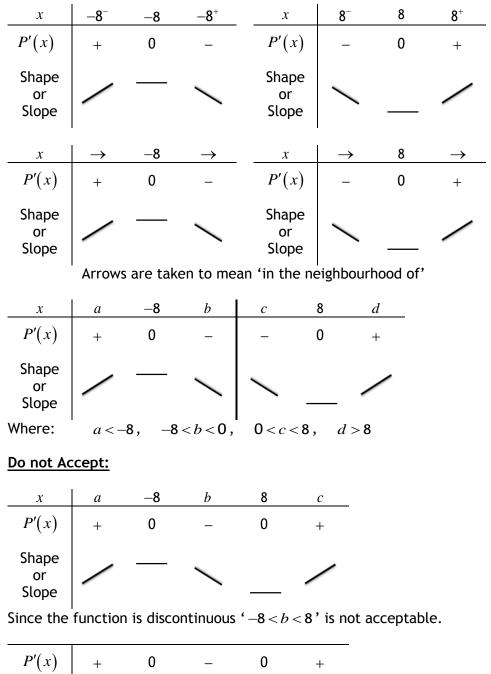
Responses with missing information in working:

Candidate A		Candidate B	Candidate C
	● ¹ ▲	$k \cos x^{\circ} \cos a^{\circ} + k \sin x^{\circ} \sin a^{\circ} \bullet^{1} \checkmark$	$\cos x^{\circ} \cos a^{\circ} + \sin x^{\circ} \sin a^{\circ} \bullet^{1} *$
$\sqrt{5}\cos a^\circ = 2$		$\cos a^\circ = 2$	$\cos a^\circ = 2$
$\sqrt{5}\sin a^\circ = -1$	● ² ✓ ● ³	$\sin a^\circ = -1$ • ² ×	$\sin a^\circ = -1 \qquad \qquad \bullet^2 x$
✓		$\tan a^\circ = -\frac{1}{2}$	$k = \sqrt{5}$ $\bullet^3 \checkmark$
$\tan a^\circ = -\frac{1}{2}$		$a = 333 \cdot 4$ Not consistent with equations at • ² .	$\tan a^\circ = -\frac{1}{2}$
$a = 333 \cdot 4$		$\sqrt{5}\cos(x-333\cdot4)^\circ$ $\bullet^3\checkmark$ \bullet^4	$a = 333 \cdot 4$
$\sqrt{5}\cos(x-333\cdot4)^\circ$	• ⁴ ✓		$\sqrt{5}\cos(x-333\cdot 4)^\circ$ • ⁴ x

Responses with the correct expansion of $k \cos(x-a)^\circ$ but errors for either \bullet^2 or \bullet^3 : Candidate F Candidate D Candidate E $k\cos x^{\circ}\cos a^{\circ} + k\sin x^{\circ}\sin a^{\circ} \bullet^{1}$ $k\cos x^{\circ}\cos a^{\circ} + k\sin x^{\circ}\sin a^{\circ} \bullet^{1} \checkmark$ $k\cos x^{\circ}\cos a^{\circ} + k\sin x^{\circ}\sin a^{\circ} \quad \bullet^{1}$ $k\cos a^\circ = -1$ 1 \checkmark $k\cos a^\circ = 2$ •2 🗶 $k\cos a^\circ = 2$ $k \sin a^\circ = 2$ •² 🗸 •² 🗴 $k \sin a^\circ = -1$ $k \sin a^\circ = 1$ $\tan a^\circ = -2$ $\bullet^3 \wedge \bullet^4 \mathbf{x}$ a = 116.6 $\tan a^\circ = -2$ $\tan a^\circ = \frac{1}{2}$ $a = 296 \cdot 6$ $a = 26 \cdot 6$ $\sqrt{5}\cos(x-116\cdot 6)^\circ$ $\bullet^3\checkmark \bullet^4\checkmark 1$ $\sqrt{5}\cos(x-26\cdot 6)^\circ$ $\bullet^3\checkmark \bullet^4\checkmark 1$

Commonly Observed Responses:

Responses with the incorrect labelling, $k(\cos A \cos B + \sin A \sin B)$ from the formula list:


Candidate G	Candidate H	Candidate I
$k\cos A\cos B + k\sin A\sin B$ • ¹ x	$k\cos A\cos B + k\sin A\sin B \bullet^1 x$	$k\cos A\cos B + k\sin A\sin B \bullet^1 x$
$k \cos a^{\circ} = 2$ $k \sin a^{\circ} = -1 \qquad \bullet^2 \checkmark$	$k \cos x^{\circ} = 2$ $k \sin x^{\circ} = -1 \qquad \bullet^{2} *$	$k \cos B^{\circ} = 2$ $k \sin B^{\circ} = -1 \qquad \bullet^{2} *$
$\tan a^\circ = -\frac{1}{2}$ $a = 333 \cdot 4$	$\tan x^{\circ} = -\frac{1}{2}$ $x = 333 \cdot 4$	$\tan B^{\circ} = -\frac{1}{2}$ $B = 333 \cdot 4$
$\sqrt{5}\cos(x-333\cdot 4)^\circ$ $\bullet^3\checkmark$ $\bullet^4\checkmark$	$\sqrt{5}\cos(x-333\cdot4)^\circ \bullet^3 \checkmark \bullet^4 \checkmark 1$	$\sqrt{5}\cos(x-333\cdot4)^\circ \bullet^3 \checkmark \bullet^4 \checkmark 1$

(Question Generic scheme		Generic scheme	Illustrative scheme Max mark
8.	(b)	(i)	$ullet^5$ state minimum value	• ⁵ -3 $\sqrt{5}$ or - $\sqrt{45}$ 1
		(ii)	Method 1	Method 1 2
			• ⁶ start to solve	• $x - 333 \cdot 4 = 180$ leading to $x = 513 \cdot 4$
			• ⁷ state value of x	$\bullet^7 x = 153 \cdot 4 \dots$
			Method 2	Method 2
			• ⁶ start to solve	• $x - 333 \cdot 4 = -180$
			\bullet^7 state value of x	• ⁷ $x = 153 \cdot 4 \dots$
Not	es:			
	_	-	ailable for a single value of x . ailable in cases where $a < -180$ or	a > 180. See Candidate J
Con	nmonl	y Obse	erved Responses:	
$\begin{array}{c} x - \\ x = \end{array}$	Candidate J - from $\sqrt{5}\cos(x-26\cdot6)^{\circ}$ $x-26\cdot6=180$ $x=206\cdot6$ \bullet^{6} \checkmark 1 \bullet^{7} \checkmark 2 Similarly for $\sqrt{5}\cos(x-116\cdot6)^{\circ}$			Candidate K - from 'minimum' of eg $-\sqrt{5}$ $3\sqrt{5}\cos(x-333\cdot4)^\circ = -\sqrt{5}$ $\cos(x-333\cdot4)^\circ = -\frac{1}{3}$ $x-333\cdot4 = 109\cdot5, 250\cdot5$ $x = 442\cdot9, 583\cdot9$ $x = 82\cdot9, 223\cdot9$ • ⁶ \checkmark 1 • ⁷ \checkmark

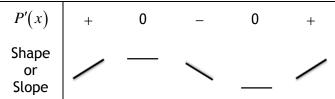

Question	Generic scheme	Illustrative scheme	Max mark				
9.	• ¹ express P in differentiable form	n • $2x + 128x^{-1}$	6				
	• ² differentiate	• ² 2 - $\frac{128}{x^2}$					
	• ³ equate expression for derivative to 0	$e^{3} 2 - \frac{128}{x^{2}} = 0$					
	• ⁴ process for x	•4 8					
	• ⁵ verify nature	 ⁵ table of signs for a derivative (see next page) ∴ minimum 					
		or $P''(8) = \frac{1}{2} > 0$: minimum					
	• ⁶ evaluate P	• ⁶ $P = 32$ or min value = 32					
Notes:	1						
2. For candida setting thei 3. e^4 , e^5 and e^6 4. At e^2 accept 5. Ignore the a 6. $\sqrt{\frac{128}{2}}$ must 7. e^5 is not ava 8. e^6 is still ava minimum at 9. e^5 and e^6 are of x .	 For candidates who integrate any term at the •² stage, only •³ is available on follow through for setting their 'derivative' to 0. •⁴, •⁵ and •⁶ are only available for working with a derivative which contains an index ≤ -2. At •² accept 2-128x⁻². Ignore the appearance of -8 at •⁴. √(128)/2 must be simplified at •⁴ or •⁵ for •⁴ to be awarded. •⁵ is not available to candidates who consider a value of x ≤ 0 in the neighbourhood of 8. •⁶ is still available in cases where a candidate's table of signs does not lead legitimately to a minimum at •⁵. •⁵ and •⁶ are not available to candidates who state that the minimum exists at a negative value 						
	Commonly Observed Responses:						
Candidate A - d one line		Candidate B - differentiating over more t one line	han				
P'(x) = 2 + 128x	1	$P(x) = 2x + 128x^{-1} \qquad \bullet^1 \checkmark$					
P'(x) = 2 - 128x	2	$P'(x) = 2 + 128x^{-1}$ $P'(x) = 2 - 128x^{-2}$ • ² *					
$2 - 128x^{-2} = 0$	3	$P'(x) = 2 - 128x^{-2} \qquad \bullet^{2} \times \\ 2 - 128x^{-2} = 0 \qquad \bullet^{3} \checkmark 1$					

Table of signs for a derivative

Accept:

Here, for exemplification, tables of signs considering both roots separately have been displayed. However, in this question, it was only expected that candidates would consider the positive root for \bullet^5 . Do not penalise the consideration of the negative root.

Since the function is discontinuous ' $-8 \rightarrow 8$ ' is not acceptable.

General Comments:

- For this question do not penalise the omission of 'x' or the word 'shape'/'slope'.
- Stating values of P'(x) in the table is an acceptable alternative to writing '+' or '-' signs. Values must be checked for accuracy.
 - The only acceptable variations of P'(x) are: P', $\frac{dP}{dx}$ and $2 \frac{128}{x^2}$.

Question	Generic scheme	Illustrative scheme	Max mark	
10.	• ¹ use the discriminant	• ¹ $(m-3)^2 - 4 \times 1 \times m$	4	
	• ² identify roots of quadratic expression	• ² 1, 9		
	• ³ apply condition	• ³ $(m-3)^2 - 4 \times 1 \times m > 0$		
	• ⁴ state range with justification	• $m < 1, m > 9$ with eg sketch or table of signs		
Notes:				
then \bullet^3 is log	1. If candidates have the condition 'discriminant <0', 'discriminant \leq 0' or 'discriminant \geq 0', then \bullet^3 is lost but \bullet^4 is available.			
2. Ignore the a applied.	5 11 1 7			
	· · · · · · · · · · · · · · · · · · ·			
Commonly Obse	Commonly Observed Responses:			
Candidate A				
$(m-3)^2-4\times1\times$	<i>m</i> ● ¹ ✓			
$m^2 - 10m + 9 = 0$				
m = 1, m = 9	•2 ✓			
$b^2 - 4ac > 0$				
<i>m</i> < 1, <i>m</i> > 9	• •			
Expressions for a , b , and c implied at \bullet^1				

Question	Generic scheme	Illustrative scheme	Max mark
11. (a)	• ¹ substitute for P and t	• $1 50 = 100(1-e^{3k})$	4
	• ² arrange equation in the form $A = e^{kt}$	• ² $0 \cdot 5 = e^{3k}$ or $-0 \cdot 5 = -e^{3k}$	
	• ³ simplify	$\bullet^3 \ln 0 \cdot 5 = 3k$	
	• ⁴ solve for k	• ³ $\ln 0.5 = 3k$ • ⁴ $k = -0.231$	
Notes:			
 •² may be assumed by •³. Any base may be used at •³ stage. See Candidate D. Accept any answer which rounds to -0.2. •³ must be consistent with the equation of the form A = e^{kt} at its first appearance. For candidates whose working would (or should) arrive at log(negative) •⁴ is not available. Where candidates use a 'rule' masquerading as a law of logarithms, •³ and •⁴ is not available. 			
	erved Responses:		
Candidate A $50 = 100(1 - e^{3k})$ $0 \cdot 5 = -e^{3k}$ $\ln(0 \cdot 5) = 3k$ $k = -0 \cdot 231$ $68 \cdot 5$ $31 \cdot 5\%$ still queue Candidate C $50 = 100(1 - e^{3k})$ $-0 \cdot 5 = -e^{3k}$ $\ln(-0 \cdot 5) = \ln(-k)$ $k = -0 \cdot 231$ $68 \cdot 5$	e^{3k} $e^{2} \times e^{3k}$ $e^{2} \times e^{3k}$ $e^{2} \times e^{3k}$ $e^{2} \times e^{3k}$ e^{3k} e^{3k} e^{3k} e^{3k} e^{3k} e^{3k} e^{3k} e^{3k}	Candidate B $0 \cdot 5 = 100(1 - e^{3k})$ • ¹ $0 \cdot 995 = e^{3k}$ • ² $\ln(0 \cdot 995) = 3k$ • ³ $k = -0 \cdot 0017$ • ⁴ $P = 0 \cdot 8319$ • ⁵ $99 \cdot 2\%$ still queuing • ⁶ Candidate D $50 = 100(1 - e^{3k})$ • ¹ $0 \cdot 5 = e^{3k}$ • ² $\log_{10}(0 \cdot 5) = 3k \log_{10} e$ • ³ $k = -0 \cdot 231$ • ⁴	√1 √1 √1 √1 √1 √1 √ √ √
31.5% still queue		● ⁵ 68·5	2
(b)	• ⁵ evaluate <i>P</i> for $t = 5$	 6 31.5% still queueing 	2
Notes:	• ⁶ interpret result	• 31.5% still queueing	
7. \bullet^5 and \bullet^6 are not available where $k \ge 0$. 8. \bullet^6 is only available where the value of P in \bullet^5 was obtained by substituting into an exponential expression.			
Commonly Observed Responses:			
Candidate D - $k = -0.2$ 63.2 $\bullet^5 \checkmark$ 36.8% still queueing $\bullet^6 \checkmark$			

Question	Generic scheme	Illustrative scheme	Max mark
12. (a) (i)	• ¹ write down coordinates of centre	• ¹ (13, -4)	1
(ii)	• ² substitute coordinates and process for <i>c</i>	• ² $13^2 + (-4)^2 + 14 \times 13 - 22 \times (-4) \dots$ leading to $c = -455$	1
Notes:			

- 1. Accept x = 13, y = -4 for \bullet^1 .
- 2. Do not accept g = 13, f = -4 or 13, -4 for \bullet^{1} .
- 3. For those who substitute into $r = \sqrt{g^2 + f^2 c}$, working to find r must be shown for \bullet^2 to be awarded.

Commonly Observed Responses:

(b) (i)	• ³ calculate two key distances	• ³ two from $r_2 = 25$, $r_1 = 10$ and $r_2 - r_1 = 15$	2
	• ⁴ state ratio	• ⁴ 3:2 or 2:3	
(ii)	• ⁵ identify centre of C_2	• ⁵ (-7,11) or $\begin{pmatrix} -7\\ 11 \end{pmatrix}$	2
	• ⁶ state coordinates of P	• ⁶ (5,2)	

Notes:

- 4. The ratio must be consistent with the working for $r_2 r_1$
- 5. Evidence for \bullet^3 may appear on a sketch.
- 6. For 3:2 or 2:3 with no working, award 0/2.
- 7. At \bullet^6 , the ratio used to identify the coordinates of P must be consistent with the sizes of the circles in the original diagram for \bullet^6 to be available.

Commonly Observed Responses:

(c)	\bullet^7 state equation	• ⁷ $(x-5)^{2} + (y-2)^{2} = 1600$ or $x^{2} + y^{2} - 10x - 4y - 1571 = 0$	1
Notes:			
Commonly Observed Responses:			

[END OF MARKING INSTRUCTIONS]